CIS194 Spring13 的 Homework 5,有关类型类(typeclass)的作业。
- 你应当提交一个
Calc.hs
的文件,同时文件中应当包含一个同名的模块(module)。
如我们在课上所见,Haskell 的类型类提供了特殊的多态性(ad-hoc polymorphism),即能够根据输入的类型决定做什么。 这次作业探讨了在构建特定领域语言(domain-specific languages)时类型类的一个有趣用法。
表达式展开目录
假设有一天你的新工作是一个软件工程师,你被要求为公司的新重磅产品编程:一个计算器。但这不只是一个普通的计算器!广泛的焦点小组(Extensive focus group)分析表明,人们真正想让他们的计算器拥有的功能无非是能够做整数加法和乘法。额外的功能只会让界面变得更杂乱。
你的老板已经开始对域(domain)建模了,算术表达式的数据类型如下:
- data ExprT = Lit Integer
- | Add ExprT ExprT
- | Mul ExprT ExprT
- deriving (Show, Eq)
这个类型能够兼容涉及到整数常量、加法、乘法的算术表达式。例如表达式 (2+3)×4 应该能够表示成:Mul (Add (Lit 2) (Lit 3)) (Lit 4)
。
你的老板已经在 ExprT.hs
中定义了 ExprT
类型,所以和平时一样你只需要在你的文件顶部引用 ExprT
就可以了。然而,这里就是你的老板卡住的地方。
练习 1 展开目录
编写第一个版本的计算器:为 ExprT
编写一个求值器:
- eval :: ExprT -> Integer
例如:
- eval (Mul (Add (Lit 2) (Lit 3)) (Lit 4)) == 20
我的解答展开目录
- eval :: ExprT -> Integer
- eval (ExprT.Lit x) = x
- eval (ExprT.Add a b) = eval a + eval b
- eval (ExprT.Mul a b) = eval a * eval b
解读:简单的模式匹配,这里使用了 ExprT.Lit
,表明 Lit
函数是在 ExprT
模块中定义的,是为了和后面的练习题做出区别,下面还会有定义重名的情况。这个求值器本身就是简单的递归调用和模式匹配。
ExprT
最基本的结构就是 Lit
,他的值就是其中包含的整数。而其他的 Add
和 Mul
就是对 Lit
和前述二者的组合,因此对于任意两个 ExprT
的运算,分别求明白参与运算的两个 ExprT
的值,再进行运算就是了。
练习 2 展开目录
UI 部门已经实现了焦点小组的研究,并且已经准备好和你协同了。他们已经开发了前端用户接口:一个用于解析所选语言的文本解析器。他们发给你了一个模组 Parser.hs
,其中的 parseExp
函数用于解析。如果你将 ExprT
的构造函数作为参数传给它,它则将一个字符串以 ExprT
类型的算术表达式重新表示。例如 1:
- *Calc> parseExp Lit Add Mul "(2+3)*4"
- Just (Mul (Add (Lit 2) (Lit 3)) (Lit 4))
- *Calc> parseExp Lit Add Mul "2+3*4"
- Just (Add (Lit 2) (Mul (Lit 3) (Lit 4)))
- *Calc> parseExp Lit Add Mul "2+3*"
- Nothing
利用 UI 团队的资源实现额外的函数:
- evalStr :: String -> Maybe Integer
该函数对一个字符串类型的算术表达式求值,如果输入的字符串是无效的,那么输出 Nothing
,如果输入有效,就输出 Just n
,n
是输入所对应的值。
我的解答展开目录
- evalStr :: String -> Maybe Integer
- evalStr str = case parseExp ExprT.Lit ExprT.Add ExprT.Mul str of
- Nothing -> Nothing
- Just x -> Just (eval x)
这里使用了一个模式匹配来判断由 parseExp
函数解析的结果是 Nothing
还是 Just x
,我知道对于 Maybe
的判断有更好的函数,例如 isNothing
和 fromMaybe
,但是我总觉得对于本题模式匹配更简单吧。如果是 Nothing
就返回 Nothing
,否则对其求值并包装一个 Just
作为返回值。
练习 3 展开目录
由于不可抗力 —— Win10 蓝屏 :(
—— 后面本来写好的翻译和解答没能保存,因此之后不再进行题目的翻译了。此处推荐使用谷歌翻译,现在谷歌对于长文章已经能翻译的很好了。
Good news! Early customer feedback indicates that people really do love the interface! Unfortunately, there seems to be some disagreement over exactly how the calculator should go about its calculating business. The problem the software department (i.e. you) has is that while ExprT
is nice, it is also rather inflexible, which makes catering
to diverse demographics a bit clumsy. You decide to abstract away the properties of ExprT
with a type class.
Create a type class called Expr
with three methods called lit
, add
, and mul
which parallel the constructors of ExprT
. Make an instance of Expr
for the ExprT
type, in such a way that
- mul (add (lit 2) (lit 3)) (lit 4) :: ExprT
- == Mul (Add (Lit 2) (Lit 3)) (Lit 4)
Think carefully about what types lit
, add
, and mul
should have. It may be helpful to consider the types of the ExprT
constructors, which you can find out by typing (for example)
- *Calc> :t Lit
at the ghci prompt.
Remark. Take a look at the type of the foregoing example expression:
- *Calc> :t mul (add (lit 2) (lit 3)) (lit 4)
- Expr a => a
What does this mean? The expression mul (add (lit 2) (lit 3)) (lit 4)
has any type which is an instance of the Expr
type class. So writing it by itself is ambiguous: GHC doesn't know what concrete type you want to use, so it doesn't know which implementations of mul
, add
, and lit
to pick.
One way to resolve the ambiguity is by giving an explicit type signature, as in the above example. Another way is by using such an expression as part of some larger expression so that the context in which it is used determines the type. For example, we may write a function reify as follows:
- reify :: ExprT -> ExprT
- reify = id
To the untrained eye it may look like reify does no actual work! But its real purpose is to constrain the type of its argument to ExprT
. Now we can write things like
- reify $ mul (add (lit 2) (lit 3)) (lit 4)
at the ghci prompt.
我的解答展开目录
- class Expr a where
- lit :: Integer -> a
- add :: a -> a -> a
- mul :: a -> a -> a
-
- instance Expr ExprT where
- lit x = ExprT.Lit x
- add a b = ExprT.Lit (eval a + eval b)
- mul a b = ExprT.Lit (eval a * eval b)
首先是对 ExprT
的抽象,可以见得:lit
函数和 Lit
构造函数一样,将一个整数转换成对应的数据类型 a
,故类型是 Integer -> a
。而 add
和 mul
则接受两个类型相同的表达式,做出计算并封装回原来的类型,因此上述两个函数应当是 a -> a -> a
。
至于 Expr
对 ExprT
的实例,则调用 ExprT
的函数即可。唯一需要注意的是 eval
计算出来的是整数,还需要调用 lit
才能够将其封装回 ExprT
类型。
练习 4 展开目录
The marketing department has gotten wind of just how flexible the calculator project is and has promised custom calculators to some big clients. As you noticed after the initial roll-out, everyone loves the interface, but everyone seems to have their own opinion on what the semantics should be. Remember when we wrote ExprT
and thought that addition and multiplication of integers was pretty cut and dried? Well, it turns out that some big clients want customized calculators with behaviors that they have decided are right for them.
The point of our Expr
type class is that we can now write down arithmetic expressions once and have them interpreted in various ways just by using them at various types.
Make instances of Expr
for each of the following types:
Integer
- works like the original calculator
Bool
- every literal value less than or equal to 0 is interpreted as False, and all positive Integers are interpreted as True; "addition" is logical or, "multiplication" is logical and
MinMax
- "addition" is taken to be the max function, while "multiplication" is the min function
Mod7
- all values should be in the ranage 0...6, and all arithmetic is done modulo 7; for example, 5+3=1 .
The last two variants work with Integer
s internally, but in order to provide different instances, we wrap those Integers in newtype
wrappers. These are used just like the data
constructors we've seen before.
- newtype MinMax = MinMax Integer deriving (Eq, Show)
- newtype Mod7 = Mod7 Integer deriving (Eq, Show)
Once done, the following code should demonstrate our family of calculators:
- testExp :: Expr a => Maybe a
- testExp = parseExp lit add mul "(3 * -4) + 5"
- testInteger = testExp :: Maybe Integer
- testBool = testExp :: Maybe Bool
- testMM = testExp :: Maybe MinMax
- testSat = testExp :: Maybe Mod7
Try printing out each of those tests in ghci
to see if things are working. It’s great how easy it is for us to swap in new semantics for the same syntactic expression!
我的解答展开目录
- newtype MinMax = MinMax Integer deriving (Eq, Show)
- newtype Mod7 = Mod7 Integer deriving (Eq, Show)
-
- instance Expr Integer where
- lit = id
- add a b = a + b
- mul a b = a * b
-
- instance Expr Bool where
- lit x
- | x <= 0 = False
- | otherwise = True
- add a b = a || b
- mul a b = a && b
-
- instance Expr MinMax where
- lit = MinMax
- add (MinMax a) (MinMax b) = lit $ max a b
- mul (MinMax a) (MinMax b) = lit $ min a b
-
- instance Expr Mod7 where
- lit x = Mod7 (x `mod` 7)
- add (Mod7 a) (Mod7 b) = lit (a + b)
- mul (Mod7 a) (Mod7 b) = lit (a * b)
解读:对于整数类,lit
其实什么都没干,就相当于 lit x = x
,因此使用 id
。add
和 mul
就是整数的运算。
对于布尔类型,lit
函数需要对给定的整数做个判断。因此这里使用了 guards
写法,当然也可以用 if...else...then
语法糖。而加法和乘法按照对应的要求实现即可。
关于 MinMax
类型,lit
函数就相当于 MinMax
的构造函数,因为其本质还是整数,所以不需要额外的转换。加法和乘法都使用了模式匹配,将 MinMax
里面包含的整数直接取出来,进行相应运算之后再调用 lit
包装回 MinMax
类型。此处利用了 Haskell 的类型推断:对于该 add
实现,应该是 MinMax -> MinMax -> MinMax
,因而 Haskell 会自动找到返回值是 MinMax
的 lit
实现,而不会导致错误。
下面的 Mod7
是类似的原理,不再赘述。
GHCi 检查展开目录
- *Calc> testExp
- Just (-7)
- *Calc> testInteger
- Just (-7)
- *Calc> testBool
- Just True
- *Calc> testMM
- Just (MinMax 5)
- *Calc> testSat
- Just (Mod7 0)
练习 5(或者做下面的练习 6)展开目录
The folks down in hardware have finished our new custom CPU, so we'd like to target that from now on. The catch is that a stackbased architecture was chosen to save money. You need to write a version of your calculator that will emit assembly language for the new processor.
The hardware group has provided you with StackVM.hs
, which is a software simulation of the custom CPU. The CPU supports six operations, as embodied in the StackExp
data type:
- data StackExp = PushI Integer
- | PushB Bool
- | Add
- | Mul
- | And
- | Or
- deriving Show
-
- type Program = [StackExp]
PushI
and PushB
push values onto the top of the stack, which can store both Integer
and Bool
values. Add
, Mul
, And
, and Or
each pop the top two items off the top of the stack, perform the appropriate operation, and push the result back onto the top of the stack. For example, executing the program
- [PushB True, PushI 3, PushI 6, Mul]
will result in a stack holding True
on the bottom, and 18
on top of that.
If there are not enough operands on top of the stack, or if an operation is performed on operands of the wrong type, the processor will melt into a puddle of silicon goo. For a more precise specification of the capabilities and behavior of the custom CPU, consult the reference implementation provided in StackVM.hs
.
Your task is to implement a compiler for arithmetic expressions. Simply create an instance of the Expr
type class for Program
, so that arithmetic expressions can be interpreted as compiled programs. For any arithmetic expression exp :: Expr a => a
it should be the case that
- stackVM exp == Right [IVal exp]
Note that in order to make an instance for Program
(which is a type synonym) you will need to enable the TypeSynonymInstances
and FlexibleInstances
language extension, which you can do by adding
- {-# LANGUAGE TypeSynonymInstances,FlexibleInstances #-}
as the first line in your file.
Finally, put together the pieces you have to create a function
- compile :: String -> Maybe Program
which takes String
s representing arithmetic expressions and compiles them into programs that can be run on the custom CPU.
我的解答展开目录
- instance Expr Program where
- lit x = [PushI x]
- add a b = a ++ b ++ [StackVM.Add]
- mul a b = a ++ b ++ [StackVM.Mul]
-
- compile :: String -> Maybe Program
- compile = parseExp lit add mul
解读:这里他要求将数学表达式转换成一个由操作组成的列表。显然易见,lit
就是要把给定的数字放在栈顶,所以对应他给的函数就是 PushI
。而加法和乘法则是默认对栈顶的两个数字操作,因此实现就是先把要操作的两个数字放在栈顶,而对于两个列表,每个列表如果正确的话执行完后将会把结果放在栈顶,后续操作的结果会摞在原先的栈顶上。因此 a
和 b
分别代表两个程序列表,执行后就相当于 [PushI x, PushI y]
,其中 x
和 y
分别就是 a
和 b
执行后的结果。最后连接上对应的操作即可。
而 compile
就是 parseExp lit add mul
。由于 compile
输出是 Maybe Program
,因此类型推断表明 parseExp lit add mul
使用的实现一定是产生 Program
的实现,因为 parseExp
的类型是 (Integer -> a) -> (a -> a -> a) -> (a -> a -> a) -> String -> Maybe a
,其中 a
在这里就是 Program
。
练习 6(或做上面的练习 5)展开目录
Some users of your calculator have requested the ability to give names to intermediate values and then reuse these stored values later.
To enable this, you first need to give arithmetic expressions the ability to contain variables. Create a new type class HasVars a
which contains a single method var :: String -> a
. Thus, types which are instances of HasVars
have some notion of named variables.
Start out by creating a new data type VarExprT
which is the same as ExprT
but with an extra constructor for variables. Make VarExprT
an instance of both Expr
and HasVars
. You should now be able to write things like
- *Calc> add (lit 3) (var "x") :: VarExprT
But we can't stop there: we want to be able to interpret expressions containing variables, given a suitable mapping from variables to values. For storing mappings from variables to values, you should use the Data.Map
module. Add
- import qualified Data.Map as M
at the top of your file. The qualified
import means that you must prefix M
. whenever you refer to things from Data.Map
. This is standard practice, since Data.Map
exports quite a few functions with names that overlap with names from the Prelude. Consult the Data.Map
documentation to read about the operations that are supported on Maps.
Implement the following instances:
- instance HasVars (M.Map String Integer -> Maybe Integer)
- instance Expr (M.Map String Integer -> Maybe Integer)
The first instance says that variables can be interpreted as functions from a mapping of variables to Integer
values to (possibly) Integer
values. It should work by looking up the variable in the mapping.
The second instance says that these same functions can be interpreted as expressions (by passing along the mapping to subexpressions and combining results appropriately).
Note: to write these instances you will need to enable the FlexibleInstances
language extension by putting
- {-# LANGUAGE FlexibleInstances #-}
as the first line in your file.
Once you have created these instances, you should be able to test them as follows:
- withVars :: [(String, Integer)]
- -> (M.Map String Integer -> Maybe Integer)
- -> Maybe Integer
- withVars vs exp = exp $ M.fromList vs
- *Calc> :t add (lit 3) (var "x")
- add (lit 3) (var "x") :: (Expr a, HasVars a) => a
- *Calc> withVars [("x", 6)] $ add (lit 3) (var "x")
- Just 9
- *Expr> withVars [("x", 6)] $ add (lit 3) (var "y")
- Nothing
- *Calc> withVars [("x", 6), ("y", 3)]
- $ mul (var "x") (add (var "y") (var "x"))
- Just 54
我的解答展开目录
- class HasVars a where
- var :: String -> a
-
- data VarExprT = Lit Integer
- | Add VarExprT VarExprT
- | Mul VarExprT VarExprT
- | Var String
- deriving (Show, Eq)
-
- evalVar :: VarExprT -> Integer
- evalVar (Calc.Lit x) = x
- evalVar (Calc.Add a b) = evalVar a + evalVar b
- evalVar (Calc.Mul a b) = evalVar a * evalVar b
-
- instance HasVars VarExprT where
- var str = Calc.Lit 0
-
- instance Expr VarExprT where
- lit x = Calc.Lit x
- add a b = lit $ (evalVar a + evalVar b)
- mul a b = lit $ (evalVar a * evalVar b)
-
- instance HasVars (M.Map String Integer -> Maybe Integer) where
- var = M.lookup
- instance Expr (M.Map String Integer -> Maybe Integer) where
- lit x = (\_ -> Just x)
- add f g = (\x -> case f x of
- Nothing -> Nothing
- Just f' -> case g x of
- Nothing -> Nothing
- Just g' -> Just (f' + g'))
- mul f g = (\x -> case f x of
- Nothing -> Nothing
- Just f' -> case g x of
- Nothing -> Nothing
- Just g' -> Just (f' * g'))
-
- withVars :: [(String, Integer)]
- -> (M.Map String Integer -> Maybe Integer)
- -> Maybe Integer
- withVars vs exp = exp $ M.fromList vs
解读:首先是 HasVars
类型类,按照题目要求书写即可。
然后具体的 VarExprT
类型,除了包含 ExprT
的三个构造函数之外,还应该有一个额外的处理变量的构造函数,即 Var String
。
随后是一个辅助函数 evalVar
,它的作用类似 eval
,是给 VarExprT
求值的。这个函数在下面创建 Expr
实例时将会用到。
下面的两个实例,HasVars
的实例是令默认的 VarExprT
的变量默认求值是 0,实际上在后面的实现我也没发现有啥用到的地方,因此就给了个 0,理论上可以随便给的。Expr
实例就是 VarExprT
的计算,同上面的实例实现,不再赘述。
后面关于两个函数类型的实例,其中 HasVars
就是一个查询。(M.Map String Integer -> Maybe Integer)
是给定一个映射表要返回一个可能的整数,而要 M.lookup
加上一个字符串,剩下的刚好就是这个,即给定一个要查询的变量名,返回一个接收映射表(即从哪查询)并返回查到的数值(有就是 Just
,没有就是 Nothing
)。下面的 Expr
同理。
lit
函数接收一个整数,返回一个函数,该函数不管接受什么参数都返回该整数,因为这是确定的数,不需要查询。加法则是利用模式匹配,其中 x
就是要查询的映射表,如果第一个表达式中查询结果是 Nothing
那么直接就返回 Nothing
,如果有值,那么就取出来看第二个表达式。第二个表达式同理,只有两个都有值时才做运算,并在运算后包装回原来的数据类型。
- 全文完 -
- 这里的显示的代码是在 GHCi 中执行的。进入 GHCi 后使用
:l [filename]
加载对应的文件,此处应该是:l Calc.hs
或者直接省略.hs
直接使用模组名。加载成功后当前光标所在行应当以*Calc>
开头,随后可以复制粘贴对应代码框中*Calc>
后面的代码,在 GHCi 中运行即可。其中偶数行代表执行上一行代码后的输出。 ↩
【代码札记】The Day I Learned Haskell 6 由 天空 Blond 采用 知识共享 署名 - 非商业性使用 - 相同方式共享 4.0 国际 许可协议进行许可。
本许可协议授权之外的使用权限可以从 https://skyblond.info/about.html 处获得。
好长,我居然看完了 qwq
话说你的 Mirages 怎么没有 OwO 表情